(〈n〉/nbins) i

نویسنده

  • Jiří Rameš
چکیده

The behaviour of like-charge and unlike-charge second factorial moments in e + e − reactions is discussed. It is argued that Monte Carlo calculation with the help of generators JETSET 7.4 and HERWIG 5.8 points to the conclusion that the only nontrivial cause of intermittency are Bose-Einstein correlations of identical particles. Since the original proposal of Bialas and Peschanski [1], factorial moments (as well as more general quantities of the same character [2]) have become a widely accepted tool in studying multiparticle final states in various processes. Let us define the i-th factorial moment as F i = 1 N events events n bins k=1 {n k (n k − 1) · · · (n k − i + 1)} /n bins (n/n bins) i (1) where n is the average number of particles in the full phase space region accepted, b bins denotes the number of bins in this region, which is given by (2 b) d , b = 0, 1, 2... (d is the dimension of the phase space region considered) and n k is the multiplicity in k-th bin. In what follows I will consider factorial moments in two and three phase-space dimensions, in the conventional variables (y, ϕ) and (y, ϕ, ˜ p t) (y denotes rapidity, taken here from the interval (−3.2, 3.2), ϕ is the azimuthal angle and˜p t is the " flattened " momentum transverse defined as [3] ˜ p t = pt 0 P (p)dp p max t 0 P (p)dp (2)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amitraz Poisoning; A case study

A m i t r a z, a n i ns e c t i c i d e /a ca ri c i de of the f o r m a m i d i n e p e st i c i d e s group, is a ? 2 a d r e n e r g i c ag on i st a nd of t he a m i d i ne c h e m i ca l f a m il y generally us e d to c o n t r ol animal e c top a r a s i t e s. Poisoning due to am i t r a z i s r a r e and character...

متن کامل

Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras

Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...

متن کامل

σ-sporadic prime ideals and superficial elements

Let $A$ be a Noetherian ring, $I$ be an ideal of $A$ and $sigma$ be a semi-prime operation, different from the identity map on the set of all ideals of $A$. Results of Essan proved that the sets of associated prime ideals of $sigma(I^n)$, which denoted by $Ass(A/sigma(I^n))$, stabilize to $A_{sigma}(I)$. We give some properties of the sets $S^{sigma}_{n}(I)=Ass(A/sigma(I^n))setminus A_{sigma}(I...

متن کامل

The generalized total graph of modules respect to proper submodules over commutative rings.

Let $M$ be a module over a commutative ring $R$ and let $N$ be a proper submodule of $M$. The total graph of $M$ over $R$ with respect to $N$, denoted by $T(Gamma_{N}(M))$, have been introduced and studied in [2]. In this paper, A generalization of the total graph $T(Gamma_{N}(M))$, denoted by $T(Gamma_{N,I}(M))$ is presented, where $I$ is an ideal of $R$. It is the graph with all elements of $...

متن کامل

Approximation of Jordan homomorphisms in Jordan Banach algebras RETRACTED PAPER

In this paper, we investigate the generalized Hyers-Ulam stability of Jordan homomorphisms in Jordan Banach algebras for the functional equation begin{align*} sum_{k=2}^n sum_{i_1=2}^ksum_{i_2=i_{1}+1}^{k+1}cdotssum_{i_n-k+1=i_{n-k}+1}^n fleft(sum_{i=1,i not=i_{1},cdots ,i_{n-k+1}}^n x_{i}-sum_{r=1}^{n-k+1} x_{i_{r}}right) + fleft(sum_{i=1}^{n}x_{i}right)-2^{n-1} f(x_{1}) =0, end{align*} where ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994